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Summary

We adapted and expanded upon the code for a sequential ray tracer, then parallelized it using OpenMP, MPI, and
CUDA. We ran a multitude of experiments to analyze the performance of our implementations, including on the
GHC Cluster machines and on the Pittsburgh Super Computer. Our MPI implementation achieved up to a 61.94x
speedup on 64 cores, while our OpenMP implementation achieved up to 47.98x speedup on 64 cores (for reasons
we will analyze in this report). With these results, we were able to demonstrate a live, real-time dynamic
rendering of a raytraced scene at our poster presentation.

Background

Ray tracing is a method in computer vision to develop realistic scenes by mimicking the physical properties of
light. Rays are shot from the camera into a scene, colliding with objects and bouncing around. Each collision
reveals new information about the color of a pixel of the image’s viewport, and collisions with various materials
have different effects on the behavior of the ray (for example, scattering it further according to simulated
properties of the material, or totally absorbing it). We trace the path of the ray and its collisions to get the final
color of a pixel.

For each pixel, we shoot out numerous rays (according to the number of samples per pixel), randomly offset
around the region we’re projecting onto, then average the results together to get the final color. This a Monte
Carlo algorithm designed to efficiently simulate the infinite integral of the path of all light on a scene. Each
sampled ray lands somewhere in the scene, concentrated around where the pixel projects onto but with a little bit
of randomness. For each ray, we find if it lands upon an object in our world – if it doesn’t, we return the
background color of the scene, which is either lit or totally dark – and if it does, we get the color of the material
that we hit or the light the material emits. Most materials reflect light, and in different ways. In our program, we
implemented lambertian materials which scatter light uniformly; metals which reflect light according to the angle
of incidence, potentially imperfectly; and dielectric materials (like glass or water) that refract rays. For these
materials, we get what portion of light they reflect, then recursively follow the path of the reflected ray into the
world, where they may hit other objects and repeat the process up to some fixed depth. Finally, we average the
color of all of our rays to get the final color for a pixel, and leading to the somewhat emergent properties of
things like shadows, reflections, aliasing, bending light – elements of our vision that we experience in our real
world.

https://dialmond.github.io/15418-project/
https://github.com/dialmond/15418-project


The problem with ray tracing is that an enormous amount of computation must be done for each scene. All of the
millions of pixels in an image have – in our implementation – up to hundreds of samples each. This naturally
justifies the use of parallelism. However, due to the recursive and dynamic nature of ray tracing, where even rays
offset by the same pixel can have drastically different paths due to the randomness of things like scattering, it
becomes difficult to appropriately balance this work between processors. Furthermore, we experienced difficulties
with memory sharing of the world information between threads, which tells rays which objects they hit, which
materials those objects have, and what to do next.

To zoom back out before diving back in later – our ray tracer takes parameters like image size, samples per pixel,
scene behavior, a selection of which scene that we’ve created to render – in our demo, dynamic user information
affecting the camera’s position – recursion depth, and number of threads. It outputs an image of the rendered
scene and timing information.

Data structures include bounding boxes (Bounding Volume Hierarchy, abbreviated BVH henceforth) to optimize
memory accesses to the world and the world information itself. In our implementation, that’s spheres, planes, and
their materials, which we store in objects in a world vector. These data structures are repeatedly being probed by
our camera renderer via millions of projected rays – which is computationally expensive and is the main target of
parallelization in this project. We were able to take a data-parallel approach to this in our MPI implementation by
instantiating multiple copies of the worlds amongst various processors, and having each one compute a less
computationally intense image, before combining results together through communication. Finally, we struggled
with locality due to the divergent behavior of rays in our scene, but locality is generally exhibited in nearby
regions of pixels. While we did not attempt an SIMD implementation, we believe this would’ve been ineffective
due to this divergent behavior.

BVH:
BVH is a data structure that aims to minimize the number of memory accesses needed to track down the location
of an object. The basic idea entails bounding a number of primitives in a cube/bounding object. If a ray misses
the bounding object, we know it misses all objects enclosed, saving us from checking them individually. Without
BVH we have to check every single object for every single ray to see if we have a collision. Bounding objects are
hierarchical and approximate a binary search when looking for an object. Whenever we add an object to the
world, we insert it into the tightest bounded object that already encloses it, or created a new bounding object to
enclose it. We experimented with implementing a BVH, which will come up later in the report.

Approach

As neither of us knew about raytracing or computer vision before this project, we began by learning about it and
following the tutorial from the books “Ray Tracing In One Weekend”, and “Ray Tracing: the Next Week” by
Peter Shirley, Trevor David Black, and Steve Hollasch. This is what we modeled our original, C++ sequential
implementation off of and expanded upon.

https://raytracing.github.io/books/RayTracingInOneWeekend.html
https://raytracing.github.io/books/raytracingthenextweek.html


We began by first implementing the rendering system outlined in the first book, then selectively explored
elements like quadrilaterals, BVH, and lighting from the latter parts of the series, bringing these into our
sequential version. We created five scenes to benchmark against (further explored in Results):

● simple: a simple scene of two spheres, but with two quadrilateral lights

● materials: a more dynamic scene with 104 sphere primitives showcasing the three light-scattering
materials we implemented, metals, lambertian surfaces, and dielectric. Objects were partially positioned
behind a large dielectric (think glass) sphere as a way to introduce more complex regions of computation
in the scene to promote work imbalance

● grid: a grid of dynamic size of uniformly colored metal spheres arranged in a cube

● biglittle: one thousand uniformly colored lambertian sphere primitives arranged within a single cube that
takes up only one region of the final image. We were inspired by the “biglittle” scene from the CUDA
circle renderer homework for this, which we created to introduce more work imbalance

● color_grid: a grid of dynamic size of multicolored lambertian cubes arranged in a larger cube, to explore
the effects of color and the quadrilateral primitive more deeply

Scenes are shown below, ordered left to right, top to bottom, as introduced above

Then, we created a camera system that would allow us to render rotating images and how many frames to render
in a complete rotation, which we believed could help even out workload, as well as introduce new behavior for

rays within a scene (i.e, for materials we have fewer rays that go through our the dielectric sphere as the

camera rotates, for biglittle we show the cube in different regions of the image). And finally, a timing system
for all of this, a way to easily change program behavior via command line arguments, and an SDL demo that
allowed a user to control the camera with their keyboard and render scenes in real time (although this was
relatively useless without parallelization due to speed).

OpenMP:
OpenMP was the first, and theoretically, should’ve been the easiest, implementation we started with. However,
we ran into numerous problems that ultimately led us to completely rebuild much of our original sequential code.

In all implementations, the rendering code follows the basic pseudocode:



Unset

# render the image
for j in image_height
for i in image_width
pixel_color = black
for _ in the number of samples_per_pixel
initialize a ray r randomly concentrated around projection of pixel (i,j)
pixel_color += ray_color(r, max_depth, world)

image[(i,j)] = average pixel color in samples

# get the color contribution of the ray in the scene
function ray_color(r, depth, world)
if we exceeded the maximum depth
return black

if ray r did not hit anything in the world (world + objects access)
return camera background color

color_from_emission = emitted color of material (object + material access)
ray scattered = scatter the ray according to material (material access)
color_from_scatter = attenuation * ray_color(scattered, depth-1, world)
return color_from_emission + color_from_scatter

This gives us three immediate candidates for OpenMP parallelization: around the outer loop over image columns,
the inner loop over image rows, or the innermost loop over samples. However, we ran into two main challenges
in this approach: first, and unknown at the time to us, but the original library we used for randomness was not
thread safe. Each call to randomness, which was used to randomly place the original ray, and to update the new
location of the scattered ray recursively, used the same generator, updating its seeds between threads and causing
significant artifactual communication. This was more easily remedied by using the older, but thread-safe random

double generator drand48(). Secondly, we ran into significant challenges in memory access between the

world in our for loop, which includes all the objects in the world and the materials of those objects, which were
all instantiated as a series of classes that we had to “chase pointers” to access. An additional issue we had to track
down later, was the duplicated inclusion of multiple header files between threads, which we were able to remedy

with the #pragma once header, and using header guards.

Originally, with 8 threads OMP was actually slower to render our testing scene. I’m looking at my notes for this,
and it was a difference of 14.24 seconds for 1 thread, 38.98 seconds for 8 threads, or around 2.76x slower. We
also had 624,418 cache misses for 1 thread, 4,036,467 cache misses for 8 threads, around 6.46x more cache
misses, which was the first indicator of artifactual communication.

While attempting to track down these issues, I hypothesized that the issue was due to the shared world between
processes. I created a thread-based implementation (not using OpenMP) to explore this further, and found that
even when each thread created its own world and camera, we had similarly poor results in terms of speeding
down with more threads, and about a linear increase in cache misses.



I continued by removing the BVH hierarchy that we added to the original code, and was able to get a speedup of
2.2x with 8 threads – still poor, but immediately we can identify the memory accesses of this shared, global
object causing poor performance, where calls to this object were made even if we had separate world objects to
store our primitives.

Examining the code more I realized we had additional issues in the shared objects that our code relied upon to
compute things like vector normals, collisions, and compute the way material collisions affected rays.
Furthermore, I researched the shared pointers that our original code was using and found that smart pointers were
hurting our speedup as each thread had to maintain its own counts for how many times the pointed object was
used in the scene, which bounced around threads when being updated. I restructured our code to omit these
pointers, and to be less “object-oriented”, reducing the number of pointer chases we would have to complete to
locate objects and made our code reliant on fewer objects. For example, rather than using a shared object to
compute and do math on intervals, I reorganized the code so that logic would be computed inline or with
functions instead. This was the first big series of improvements, and gave us a speedup of around 3.9x with 8
threads using OMP, compared to 2.2x.

I researched OMP pitfalls online and was able to identify randomness and a lack of header guards as another
potential issue. Using a thread-safe randomness algorithm in the camera gave us a speedup of 3.5x with 8
threads, and then extending this to our material objects, increased speedup to 5.54x.

Finally, to minimize workload imbalance, dynamic scheduling increased speedup to 7.02x on this test scene. This
speedup, the best with 8 threads we had at this point, placed the pragma header on the outermost loop which
allowed OMP to dynamically schedule threads to work within all pixels, and performed moderately better than at
the inner loops. I’ll explore this in results, but the overhead incurred by dynamic scheduling actually hurt our
speedup for our most simple scenes, but proved incredibly useful for more complicated scenes with more
primitives. However, dynamic scheduling allows OMP to better allocate resources to an inherently imbalanced
problem, where different pixels can have vastly different complexities depending on how many objects their rays
project onto, and their materials/further recursive interactions. It was at this point that we collected and analyzed
our first results in bulk for OMP (outlined in Results).

Later experiments with OMP involved modifying our code so that objects scattered light less often in order to

reduce divergent behavior. Recall in our pseudocode the line `color_from_scatter = attenuation *

ray_color(scattered, depth-1, world)`. For lambertian surfaces, the original code scatters all rays and
attenuates by the color of the material. However, it is also possible to scatter rays with only a fixed probability p,
and attenuate by color/p. This reduces how deep we have to recurse for each pixel (reducing divergence, ideally
improving performance), but produces less accurate images. Results are explored in a later section.

Furthermore, I circled back to BVH and successfully reimplemented the structure in the new code style – not
relying on shared objects to do all of the computations – and was able to successfully get a speedup with BVH
enabled (results explored later).



MPI:
MPI was the second parallelization method I sought to implement, after changing the code to properly implement
OMP. The first attempt involved a main thread building up the world and communicating that information to
workers on the fly, but this involved creating many new MPI datatypes and slowdowns due to communication.
The second method, which ended up being much easier to implement, was a data-parallel approach where each
processor created its own world according to the chosen scene, processed its own user inputs, and then rendered a
less computationally complex version of the world with its own randomness by taking fewer samples than
necessary. In the end, processors communicated their computed images to a main thread, which then averaged
the colors to produce a final image. This had the effect of moving the innermost for loop in the pseudo code, and
“outsourcing” it to the various processors.

When scaling to more processors, I reduced communication between processors by having them combine their
final images hierarchically. Rather than the ROOT process gathering images from workers, each worker paired up
with another worker, combined their image, then repeated then in rounds so that any image could be combined in
log(nproc) steps, each step requiring communicating only one image between processors, greatly reducing the
footprint of communication and stress on the root processor.

The above shows an example of what one of these undersampled images would look like at first (this is what one
of 64 threads produces), then what the final image looks like once all nproc of these images are combined.
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Results

From the approach section, recall that results were computed by analyzing the renderer’s performance on five
different scenes, and by varying various inputs to the renderer.

OMP and MPI Results

We computed both Computed Time and Total Time using the chrono library– where Total Time includes the
time it takes to do things like process user inputs, initialize OMP/MPI, generate the world, and write images,
while Computation Time is just the time it takes to create the image in the scene (including communication time
for MPI). Only Computed Time is analyzed below, but for MPI results are slightly less effective if we factor in
total time (it takes longer to initialize MPI).

Unless otherwise specified, the following specifications were used:

image size: 640x360 px
samples per pixel: 64
max ray recursion depth: 50
use BVH: no
animation: none
number of primitives in grid and color_grid scenes: 5^3=125

Before diving in – I found that MPI had the best scaling and speedup due to it’s well load-balanced
implementation. In that implementation, each worker had its own world, and computed the same image, all pixels
in it, which gave us the best load balancing and memory access. In ethos it’s very similar to Data-Parallel
methods we saw for things like LLM training, complete with ring communication at the end to combine results.
OMP had limited speedup on the PSC and did not scale as well – although had close to linear speedup on the
GHC machines.

BVH did not scale as well as I would’ve initially expected on the PSC, although this could likely be an issue in
being bandwidth-limited. BVH did however lower the computation time for all scenes wherever used, although
had the greatest improvement on scenes with a high number of primitives, as we would expect. For OMP, for all

but one scene – color_grid – BVH improved speedup on the GHC machines (although strangely, this is not

true for the PSC OMP implementation, but this can likely be explained due to differences in CPU and memory
capabilities).



Speedup scaling on GHC and PSC Machines, and BVH

Above, we can see that OMP has a maximum speedup of 47.98x on the color_grid scene with 64 cores, while

having a quite limited speedup on smaller scenes like materials (4.6x with 64 cores). For scenes with few

primitives like simple, we actually get fractional speedup. On the GHC machines, we get a better speedup for 8

threads that’s pretty close to linear, for all scenes except simple.

We see the best speedup on complicated scenes that either have a high number of primitives (like color_grid
and biglittle). These scenes are very difficult to render sequentially, but in parallel become much faster.

Looking at the cache misses (see below), we see that the arithmetic mean of cache misses to threads is lower in
parallel, showing that the parallel version exhibits better locality, improving performance. This makes sense as
without BVH, the renderer has to loop through every single object in the scene for each ray. If we do this in
parallel, for nearby regions of the image, we likely have the relevant objects already in the cache. This can also

explain why we got worse speedup with BVH enabled on a scene like color_grid. Looking at the
computation times, the 1 thread BVH renderer happened to be significantly more efficient, meaning that the
benefit due to locality scaled less with 8 threads than without BVH.



Comparatively, for scenes with few primitives like `simple`, the overhead in OMP scheduling is likely partially
responsible for this fractional speedup – switching to static scheduling improves speedup from 0.82x to 0.89x.

BVH also makes lighting in a scene like simple more efficient to access in memory, which is likely the reason

for the more linear speedup with BVH enabled.

To address the scaling issues, seeing that MPI had better speedup as the number of threads scaled (results below),
I repeated the PSC experiment again, this time parallelizing over the number of samples in a pragma reduction
rather than over the pixels. I hypothesized expecting that this would scale better, even if less efficient for smaller
threads, as hopefully it would lead to a more balanced workload. However, this wasn’t the case, and we only get
worse, more uniform speedup:

As our speedup remains similar at 32 and 64 threads for even scenes that scaled much better before, I believe
then that this approach is therefore likely memory limited in terms of accessing the world, which the MPI
implementation would avoid in terms of having multiple copies of the world created for each worker.

These findings are further suggested when we look at the speedup when using BVH. In the graph below, the first
three columns represents the speedup of the parallel versions when compared to the sequential version that
doesn’t use BVH. The next three columns are the “more fair” versions that compare speedup to the sequential
version that does use BVH, for which we can see worse speedup. So while BVH improved speedup on the GHC
machines for all scenes except `color_grid`, it made speedup worse on the PSC machine, and scaled poorly.
Differences in the GHC vs PSC processors’ abilities to access memory likely explain this (more analysis below in
Cache misses section).



MPI speedup:



MPI speedup is significantly more uniform as a result of more uniform load balancing and less artifactual
communication in memory accesses. Between threads, workload distribution can only vary by the randomness in
each sample, but with millions of rays being computed this deviance evens out.

We see a worse speedup for simple – likely because the overhead in communication for combining images

with 8 threads dominates computation time. With BVH we see a better speedup – but, note that with only three
primitives BVH introduces unnecessary overhead in a scene. This increases computation time in the 1 thread
case, meaning that the communication time is comparatively less of an overhead in the 8 thread case.

Cache misses (BVH enabled)
OMP:

Scene Cache misses (1 thread) Cache misses (8 threads) Ratio (8 threads / 1 threads)

materials 152,176 149,233 0.98x

grid 109,680 143,732 1.31x

biglittle 112,496 139,091 1.24x

color_grid 114,214 152,370 1.33x

simple 97,510 143,052 1.46x

MPI:

Scene Cache misses (1 thread) Cache misses (8 threads) Ratio (8 threads / 1 threads)

materials 2,689,459 7,274,910 2.71x

grid 2,658,577 7,296,714 2.74x

biglittle 2,663,433 7,213,286 2.71x

color_grid 2,663,459 7,192,062 2.70x

simple 2,661,880 7,419,473 2.79x

Cache misses (No BVH)
OMP:

Scene GHC Cache misses (1
thread)

GHC Cache misses
(8 threads)

GHC Ratio (8 threads / 1 threads) PSC Cache misses
(1 thread)

PSC Cache misses
(8 thread)

PSC Ratio

materials 153,810 155,777 1.01x 43929 42483084 967.09x

grid 116,773 143,776 1.23x 30471 25328175 831.22x

biglittle 184,751 220,041 1.19x 53227 26469607 497.30x

color_grid 274,156 261,200 0.95x 901774 24131098 26.76x

simple 97,191 144,731 1.48x 25681 10030963 390.60x



MPI:

Scene GHC Cache misses (1
thread)

GHC Cache misses
(8 threads)

GHC Ratio (8 threads / 1 threads) PSC Cache misses
(1 thread)

PSC Cache misses
(8 thread)

PSC Ratio

materials 2,689,525 7,062,444 2.63x 2179697 15842847 7.27x

grid 2,655,217 7,346,477 2.77x 1809321 15510423 8.57x

biglittle 2,816,656 7,185,452 2.55x 1800252 15702214 8.72x

color_grid 2,871,089 7,612,656 2.65x 2039122 16558578 8.12x

simple 2,637,821 7,191,595 2.73x 1674730 15273535 9.11x

If ever there was data to explain the differences in performance and scaling between GHC and PSC, this is it!
This is the smoking gun.

For OMP, on the GHC machines, with 8 threads, we see roughly equal or only slightly higher number of cache
misses compared to the 1 thread renderer. However, on the PSC machine, this skyrockets, we see hundreds of
times more cache misses. It seems then that the PSC cores are just less efficient at memory access than the GHC
machines, or have smaller L1/L2 cache sizes. For MPI – which notably scales significantly better on PSC, but has
comparative results on GHC – we see around 2-3x times more cache misses with 8 threads on GHC, and an
expected, linear 7-9x times more cache misses with 8 threads on PSC. This certainly has to explain the
differences in scaling and the conflicting results we saw on the different machines.

Affect of Image Size on Speedup
Predominantly I did not find a significant difference between the speedup due to image size for OpenMP or for

MPI. The only clear pattern is that speedups for scenes that take more total time to render, like biglittle or

color_grid, are more uniform, which suggests that differences in speedups earlier are due to more random

fluctuations in scenes that don’t take as long to render.



Affect of Sample Size on Speedup
Sample size closely follows the patterns found in image size above. This makes sense, as increasing the total
number of pixel and the number of samples per pixel both have the same effect of uniformly increasing the
number of rays that need to be computed.

Affect of Number of Primitives and Speedup
Recall again that BVH introduces a marginal overhead that should make rendering scenes with large primitives
more effective, while the cost of this overhead is more expensive for scenes with fewer primitives. The graphs
below then show this behavior, where on small scenes BVH doesn’t scale as well in parallel, as it doesn’t justify
the overhead it incurs compared to its benefit.

For OMP we sometimes see a worse speedup with BVH enabled – for example, color_grid on one thousand
primitives. This is likely because it speeds up the 1 thread version so much, that the bottleneck in parallelization
shifts from computing rays, to communication costs between more threads, which arguably is a good problem to

have if it lowers our computation time either way. Also note that internally, boxes (in color_grid) are
implemented as 6 plane primitives to create 1 box, which perhaps shows why these findings are more prominent

for color_grid than it is for grid,where one sphere is one primitive.



Affect of Rotation on Speedup
For the following experiment, I generated 30 frames of rotation for each scene, where the camera rotated 2pi/30
radians around the center point each frame, and measured the speedup over the course of the entire process. As
the angle of the camera changes, the objects may either get closer or further away, and we view then from
different perspectives, leading to more data about each scene being collected.

Here, rotation was slower for both OMP and MPI by about the same amount, which suggests that the scenes are
perhaps in more favorable initial positions in terms of speedup for their first frames.

Affect of Sample Probability on Speedup and Correctness
To expand on something mentioned in the Approach section – every time we hit an object, we call it’s material’s

scatter function to see what color it contributes to the ray, if we should a scatter a new ray after that, and if so,

how that ray should be scattered. For the implementation of Lambertian surfaces, we always scatter a ray and

attenuate (modify the color of the relevant pixel) by the object’s color, or internally, albedo. However, it is also
possible to scatter with only a fixed probability p, and then attenuate by albedo/p.

This experiment attempted to determine the effect of scattering with various values for p. The original
expectation was that if we scattered less, then we would recurse less far into each ray and thus have less divergent

code, and therefore a better speedup with OMP. Results are presented for the scene color_grid below (which

had the most lambertian surfaces), varying the maximum recursion depth possible between 50 and 200.



The results are somewhat confirmed – the hypotheses would be that 5% scatter prob would have the highest
speedup since it has the least divergent behavior in terms of rays. However, this ended up being 25% scatter
probability instead. Furthermore, it looked like 100% – always scatter – was more effective than scattering 95%
of the time. This also makes sense, where with 95% so close to 100% it’s not likely to significantly affect how
deep we recurse with our rays, but it does introduce a new need to generate randomness and another conditional
branch to go through, limiting speedup.

However, it’s also important to note that even if lower scatter probabilities tend to have better speedups, the
images they produce are noisier as they contain less information. We compared results to reference images, and
found that 5% scatter probability, the image deviated by 4.8% from the reference, while at 50% scatter
probability this was reduced to a 1.03% deviance. The between 5% scattering and 100% scattering is shown
below:
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