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Abstract. This project reimagines the syntax structure of the English language as a Turing Complete
programming language. I present a schema to convert syntax trees into Brainfuck (bf) programs. Under
this schema, I then explore two approaches for converting bf programs into syntax trees that represent
functionally-equivalent programs. A final algorithm assigns words to completed syntax trees, generating
executable sentences, and connects the results and processes of this project to Christopher Strachey’s
Love Letter Algorithm. This positions my programming Love Language as a response to one of the first
examples of computer-generated literature and as an instance of queer computer art itself.

The code for this project – including exciting executables (!) – can be found on my website.

1 Introduction

In the Fall of 2022 I was an undergraduate sophomore, not yet formally a computer science student, and
among other more interesting life developments during that period (like coming out, dating for the first
time – somehow relevant to this paper), I was taking the linguistics course ”Nature of Language” taught by
Christina Bjorndahl. It was a typical introductory course on which I gladly used the last bit of my elective
credits, a resource otherwise sparingly spent. The majority of my future classes would be devoted to the
technical requirements of either math or computer science. But linguistics was something I took interest to
since high school and easily landed in my schedule. It was somewhere there in the milieu of morphemes,
syntax, and phonetics, I came across the inspiration central to this project and paper.

1.1 X-Bar Theory

Nature of Language introduced us to Phrase Structure Rules (PSRs), a series of rules that models the syntax
of language. Our class used them as a way to differentiate sentence ambiguity. For example, consider the
phrase, ”We saw the woman with the telescope”. Are we seeing a woman through a telescope, or a woman
who is carrying a telescope?

S → DP VP The quick brown fox jumps over the lazy dog (1)
DP → D N1 (the)D (quick brown fox)N1 (2)
N1 → (AP+) N1 (PP+) (quick)AP (brown)AP fox (3)
VP → V1 (DP) (PP) (jumps)V1 (over the lazy dog)PP (4)
PP → P DP over the lazy dog (5)

Fig. 1: Abbreviated Example of Phrase Structure Rules

PSRs were first proposed by Noam Chomsky in 1957, then later expanded into X-bar theory, also a
creation by Chomsky, in 1970. [3] [4] The rules in Figure 1 show an abbreviated example of what a complete
PSR system may look like. We interpret these as follows: By (1), we know a sentence is composed of a
determiner phrase and a verb phrase. By (2), we know a determiner phrase is a determiner and a noun. By
(3), a noun is optionally preceded by any quantity of adjective phrases (i.e both ”quick” and ”brown”), and
optionally followed by any quantity of prepositional phrases.

https://cassidydiamond.me/love-languages
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From our earlier example, the syntax tree would therefore encode the difference between the prepositional
phrase ”with the telescope” modifying the noun phrase as in rule (3): ”(woman)N1 (with the telescope)PP”
– or the verb phrase as in rule (4): ”saw (the woman)DP (with the telescope)PP”.
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Fig. 2: Sentence ambiguity and syntax trees using phrase structure rules

X-Bar theory comes and simplifies these rules. While the exact motivations of these changes can be found
elsewhere, [2] a rule in X-bar theory is binary (meaning each node has exactly two children to it), and broken
up into multiple levels to introduce a hierarchy. So for example, we may have a Noun Phrase at the phrasal
level, an N’ (pronounced ”N-bar”) at the intermediate level, and an N at the word/head level.

Phrase level NP → N’ (1)
Intermediate level N’ → N’ (2)

N’ → AP N’ (3)
N’ → N’ PP (4)

Head level N’ → N (5)

(a) Abbreviated Example of X-Bar Rules
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(b) Drawing rules (1), (2) and (5) in tree hierarchy

Fig. 3

When only one rule is given we still draw two children below each node as in Figure 3b .
We observe two key properties in PSR and X-Bar theory: First, there is a well-defined structure in the

possible syntax trees that we can produce, given by the rules we start with. Second, the rules are capable of
recursion – that is, a rule can reference itself (for example, see rule (2) or (3) in Figure 3a). This structure
suggests the inklings of a programming language, which also produces highly regulated and recursive forms.

1.2 Well known homosexual: Alan Turing

In a foundational paper to the study of computer science as a whole, in 1936 Alan Turing introduced the
concept of the Turing Machine (TM), a physical model for computation. [11] The Turing Machine receives
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as input an infinite tape of symbols. At any moment the machine reads a single symbol – referred to as the
scanned symbol – and based on only that symbol can then perform several pre-determined options: moving
the tape to the left by some number of symbols, to the right, or writing a new symbol in place.

The Church-Turing thesis [9] expands upon this, and essentially posits that a Turing Machine is
capable of solving any problem that can be computed by an algorithm; and that if there is an algorithm that
can solve a problem, then it can be ran by a Turing Machine.1

A programming language or rule set is called Turing Complete if it can simulate a Turing Machine,
and by the Church-Turing thesis, we know that such languages can determine the solution to any problem
that is computable at all – that is, in terms of which problems they can solve, all Turing-Complete languages
are strictly equivalent (even if some are more efficient than others).

The connection between PSR and X-Bar rules to Turing Machines is not a stretch; certain Cellular
Automata (CA), such as Conway’s Game of Life, are also known to be Turing Complete and exhibit similar
properties. [1] In CA, an initial set of rules determines exactly how each state progresses, likened to the syntax
rules given by X-Bar theory. Furthermore, recursive properties also arise CA in that some cell structures
of can replicate themselves or ”loop” in their configuration, again similar to the often recursive nature of
syntax rules in language.

Brainfuck Besides a TM or CA, another popular Turing Complete instruction set is brainfuck (bf). Instead
of an infinite tape, the language utilizes an array of (in its original specification) 30,000 byte cells initialized
to zero, an input channel to receive initial bytes, an output channel to write bytes to, and a data-pointer
which indicates which position in the array is ”active”.

The bf language uses eight operations to affect these data structures, given by Table 1 . An input program
is a series of these operations/instructions, each being executed sequentially unless otherwise noted.

Operation Action Performed

> Move the data pointer to the right
< Move the data pointer to the left
+ Increment the data pointer
- Decrement the data pointer
[ If the active byte is zero, jump to the operation after the next ] character
] If the active byte is not zero, move to the operation before the preceding [ character
. Output the active byte to the output channel
, Set the active byte to be equal to the next byte in the input channel

Table 1: Brainfuck commands

It is well-known that this programming language is Turing-Complete. [8]

1.3 Combining the two ideas

Given these observations in X-Bar theory and aided by fundamental definitions of computability listed
above, the first goal of this paper is to assign a set of instructions to each individual syntax rule of the
English language that X-Bar theory gives us. This then creates a mapping between valid syntax trees and
the operation of the assigned instructions; a collection of syntax trees, a series of English sentences, then
encodes a computer program. We can then reduce this schema to another Turing Complete language, and
represent English sentences as computer programs and computer programs as English sentences.

In linguistics, we define syntax as the set of rules that govern how individual words and phrases combine
into well-formed sentences. In computer science, we similarly define the syntax of a programming language

1 The concept of a ”computable” problem is actually formally defined by what a TM can solve, making my use of the
word somewhat circular, but intuitively, it’s any problem a human can solve by following instructions and aided
by pen & paper.
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as the set of rules that govern how symbols and instructions combine into valid statements and expressions.
A programming language produced in this manner then would have syntax (in the computer science sense)
equivalent to the syntax of the English language.

Lastly, I’ll state here and then iterate again later, that under this strategy the words in a sentence do
not matter, only the structure of its syntax. So for our purposes the sentence ”Victimized undergraduate
students sleep occasionally” would be equivalent to ”Colorless green ideas sleep furiously” in its program
output. While words alter the semantics or meaning of a sentence in language, they do not alter the semantics
of the program, which is what it does.

1.4 Process: Syntax to Programming Language

Largely, the design and programming work of this project can be ordered in three stages:

1. Assigning instructions to rules: Assign computing instructions to X-Bar rules in such a way that
there is a mapping from syntactically-correct programs to syntactically-correct syntax trees.

2. Combining rules into programs. Given a desired program as input, use the assignment scheme to
combine X-Bar rules into syntax trees whose encoded computation is functionally equivalent to the input
program.

3. Assigning words to syntax trees. Given a series of syntax trees, assign words to the word/head-level
components to create complete, grammatical, English sentences.

The work of each stage feeds into the next, with the first being primarily a design problem, and the latter
two a challenge of creating and implementing algorithms that solve their respective tasks.

2 Assigning Instructions to Rules

X-Bar theory and the various rules it constitutes is a vast study with no universally agreed upon, singlular
standards. Methods exist to expand the rules with language features like tense, complementizer phrases,
embedded clauses, double objects, and more. [7] [2] It is an incredibly powerful theory for modeling syntax
generally across language (and not just in English), but any attempt for this model to encompass the entirety
of acceptable syntax would be incomplete and overly prescriptivist.

Thus, we begin by limiting ourselves and this project to a choice selection of X-Bar rules, partially listed
here in Figure 4 and completely enumerated in Appendix A.

This list was primarily structured around the X-Bar rules in the textbook ”Syntax: A Generative In-
troduction” by Andrew Carnie. [2] A few adjustments and simplifications to typical X-Bar rules are made:
First, conjugation is ternary, not binary (as first proposed in Chapter 6 of the textbook). This doesn’t vastly
change the program but does simplify the linguistics of conjugation. Second, and similarly, double objects
to ditransitive verbs (labeled ”DTV”, rule 20) are combined into their own rule (”DTVDP”, rule 8) to keep
the encoding binary, and again, to simplify the linguistics.

Not included in this list are adjective rules (AP phrases), adverb rules (AdvP phrases), and prepositional
rules (PP phrases).

2.1 Artistic Goals

I began with the following ”artistic goals” that I wanted to achieve in my encoding schema:

1. Encoding depends on tree structure. Converting a syntax tree into a flow of instructions should
directly utilize the structure of the tree. I do not want a ”trivial encoding”, where perhaps each word of
a specific part of speech corresponds to an individual instruction. Many of the rules in a syntax tree do
not contain words, so such an encoding would ignore these rules and their structure entirely. A tree has
dimension and its shape should influence the program flow.

2. Variety in resulting sentences. For a typical program, the generated syntax trees should yield varied
sentences that are interesting to read and use all parts of the language. For example, an encoding where
adjective rules were rarely utilized would feel disappointing, as would an encoding that required all
sentences to have prepositional phrases.
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Sentence rules SP → DP VP (1)
Determiner rules DP → DP Conj DP (2)

DP → Pronoun (3)
DP → D’ (4)
D’ → D NP (5)
D’ → NP (6)
D’ → NP (7)
DTVDP → DP DP (8)

Noun rules NP → N’ (9)
NP → NP Conj NP (10)
N’ → AP N’ (11)
N’ → N’ PP (12)
N’ → N (13)

Verb rules VP → V’ (14)
VP → VP Conj VP (15)
V’ → V’ PP (16)
V’ → V’ AdvP (17)
V’ → AdvP V’ (18)
V’ → TV DP (19)
V’ → DTV DTVDP (20)
V’ → V (21)

Fig. 4: Partial list of the X-Bar rules in the scope of this project

3. Syntax trees should be ”efficient” in how many trees are required to encode a given algorithm. This
is a very relative goal – the number of steps to execute an algorithm in a TM is far greater than the
steps needed to execute a functionally equivalent algorithm in assembly code – but ideally the simplest
algorithms one might want to implement do not explode into hundreds of required sentences.

2.2 Assignment Outline

I attempted other methods before finally settling on this approach: We proceed by assigning bf operations to
each individual X-Bar rule. A syntax tree is converted into a program by (somewhat arbitrarily) traversing
the tree in-order, and with each node that we come across, we insert its respective bf operations into our
program string (operations that are the same for all nodes with that type of rule). This allows us to convert
the ”multidimensional” structure of a tree into the one-dimensional structure of a program string, while still
preserving the tree topology in this process. Figure 5 gives an example.‘

2.3 Implementation

I was unable to find a schema that allowed arbitrary bf programs to be represented by a single sentence
with my selected X-Bar rules, mainly due to the restrictions imposed by the English syntax. For example,
assume we assign any adjective rule the bf operation X, and any N’ rule the operation Y . Because the only
rule that introduces adjective phrases is N’ → AP N’, all operations X must be followed by an operation
Y in our encoded program. The only operations in bf that satisfy this property is [ and ] – loops – but in
between each loop guard we need to be able to encode every other possible operation. We simply run out of
X-Bar rules if we try to make this work. If we picked operations besides [ and ] for X and Y , say > and
- , we’d have that every > instruction must be followed by a - which is not necessarily true in bf programs
either. We arrive at similar, seemingly unresolvable challenges with other rules.

The notion of functional equivalence offers us a way out. For those familiar with bf, we observe that the
operations + and - , > and < , are ”reversible” and pairwise inverses of each other. Any bf program composed
of these operations can be entirely undone by mirroring/reversing the program and then inverting each
operation. For example, the program >>+>- , which moves the data pointer right twice, increments, moves
right once more, decrements, can be undone by its inverse +<-<< ; we immediately increment our previous
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SP → DP VP

DP → Pronoun <<<<

Pronoun .

VP → V’ >

. V’ → V

V .

(a) Syntax tree encoding the bf program <<<<> ,
equivalent to <<<

NP → N’ >

. N’ → AP N’ +

AP → A’ +

. A’ → AdvP A’ -

AdvP → Adv’

. Adv’ → Adv -

Adv .

A’ → A +

A .

N’ → N <

N .

(b) Syntax tree encoding the bf program >+--++<> ,
equivalent to >+ .

Fig. 5: Example syntax trees and their programs

decrement, move left, undo our first increment, then move to our original position. The two programs +

and >>+>-+<-<<+ are functionally equivalent since their final states are the same, even if the latter one uses
more total operations.

While X-Bar rules do create some minimal restrictions for sentences – for example, every sentence must
be composed of a determiner phrase (which includes a noun) and a verb phrase (which includes a verb), we
have plenty of choices as well. We can choose to use adjectives, to use conjugation, to add on prepositional
phrases, which verb form we use, etc. Thus, I assigned the required structural components of a sentence
(nouns, verbs, etc) operations like > and < (an invertible pair of bf operations I chose more by art than
science), and the optional components the un-invertible operations like [ ] . and , . Thus we’re never
forced to use an un-invertible operation, and if we must encounter a > or < operation in our X-Bar rules
where we do not want one in our final program, we’re able to reverse it either elsewhere in the same sentence
or in the previous/next sentences.

Finally, by observing typical bf programs, we note repeated instances of the same operations. In a corpus
I compiled and analyzed, I found that > appears on average 7 times in a row each time, + three times in a
row, etc. For greater efficiency, I assigned bf operations of greater run lengths to X-Bar rules with a lower
recurrence period. For example, + appears quite often in a program, and adjectives can be stacked one on top
of the other (i.e, ”the scheming quick brown cunning fox”), so in my final assignment the simplest adjective
phrase encodes the instructions +++ . This also makes the resulting sentences very flowery, a property we’ll
later enjoy the effects of.

A complete list of my X-Bar rules and the operations I assigned them can be found in Appendix A. The
average run lengths of bf operations in my corpus can be found in Appendix B.

2.4 Limitations

This mapping is not bidirectional. While every syntactically-correct (”valid”) bf program can be equivalently
encoded in syntactically-correct English sentences (see Appendix C for a proof), not every syntactically-
correct English sentence yields a valid bf program. First, I note again that X-Bar theory or any model of
language will always be incomplete, and the notion of ”syntactically correct” in linguistics is fuzzy at best,
overly prescriptivist at worst. But second, for a bf program to be valid, every [ operation must be paired
with one ] operation – while my schema permits invalid bf programs by allowing these operations to be
unmatched.



Love Languages

3 Combining Rules into Programs

With a proper schema we’re well positioned to start combining rules into programs. I outline the abstract
function find bf – we take a bf program as input, and output a collection of X-Bar syntax trees that encode a
functionally equivalent program. We desire two properties from this algorithm: (1), that the resulting syntax
trees have minimum length, and (2), that the algorithm completes in a reasonable time, i.e is efficient.

We formalize these notions. The length of a syntax tree could be the number of nodes it contains, but
given that when we represent it as a sentence only the word-level nodes are shown to a reader, I’ll state
that we want to minimize the total number of words. Efficiency, I’ll define as a linear runtime in the length
of the input program. Essentially that means that just by repeatedly scanning the input program and then
performing a constant number of additional operations, we can come up with an answer.

The goals ”smallest encoding” and ”fast runtime” are a bit at odds with each other, so we’ll likely settle
on a heuristic approach for length that still ensures us efficiency.2 Consider a perfect algorithm find bf’

that is guaranteed to give us minimum length syntax trees for any input, but has non-linear runtime. If
we implement find bf by repeatedly calling find bf’ on constant-sized chunks of our input program, and
then just concatenate those outputs together, we get runtime that’s linear in the number of chunks, i.e linear
in program length. While each collection of syntax trees is optimal for its chunk, the combined syntax trees
may not be necessarily optimal for the original input, but it’s still probably pretty small.3

3.1 First approach: Graph Search

We begin by identifying our search space. What are all possible sentences our rules can create? I created a
Recursive Tree of my X-Bar rules where a choice-node connects each set of nodes of the same rule, i.e all X
rules. At choice-nodes we may choose which of these rules to use next. A rule-node represents the individual
rules themselves, which are connected to their respective left and right trees. As rules can be recursive (for
example, N’ → AP N’), some nodes are connected either back to their own choice nodes, or elsewhere to a
previous position in the tree. Figure 6 draws part of this tree.

An in-order traversal of the tree is as follows: For any choice node, choose a child to traverse to next.
At any rule-node X → Y Z, we traverse the left subtree rooted at the choice node for Y . We add any
bf operations we assigned to X → Y Z to our program string. Then, we traverse the right subtree of Z.
We begin traversal at the rule-node S → DP V P node. Completing this process and preserving the edges
between rule-nodes constructively yields a syntax tree. Any syntax tree/sentence our X-Bar rules permit can
be thought of as being produced in this manner.

Converting the Recursive Tree into a Directed Graph Powerful algorithms already exist in computer
science for searching graphs. However, ”the in-order traversal of a self-recursive binary tree” (this mess we’ve
gotten ourselves into) is itself something entirely different. We want to create a directed graph such that
the out neighbors of any vertex always represents the next nodes that we could traverse to, in a valid in-
order traversal of our recursive tree. Paths in the Directed Graph directly map to in-order traversals of our
Recursive Tree, which is again equivalent to building a syntax tree. Whenever we can complete a syntax
tree, we add a neighbor to our original root vertex in the graph to start again with a new sentence.

The program for doing this graph construction is given in its entirety with the code for this project (in
the file graph search.py), but some ideas will be outlined here. As computer scientists, we gain intuition
in noting that an in-order tree traversal can be implemented by pushing the current node to a stack4, then
moving left if we’re able to, otherwise popping from our stack and moving right.

A vertex in our Directed Graph represents a state in the Recursive Tree. Each vertex keeps track of its
X-Bar rule and a stack of stacks that I call the commitments of the vertex, which tracks the heads of rules
we’ve seen and in which ”scopes”. Each stack in our commitments is a scope that we enter by pushing onto

2 The original problem goals are NP-hard. Proof: it’s probably correct; exercise for the reader
3 In all of my implementations, my ”chunking program” is still not optimal but this communicates the rough idea
of why the overall runtime is linear, just with large constants.

4 A fundamental data structure in computer science. You can add data to it by ”pushing” or remove data by
”popping”. Items are popped in reverse order of being pushed (last in last out)



C. Diamond

Fig. 6: X-Bar rules laid out in Recursive Tree format (VP subtree and conjugation rules omitted)
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the outer-stack, and leave by popping. We also have a boolean marker letting us know if the left subtree has
already been explored or not.

Definitions Classes and parts of X-Bar rules

1. A leaf is a part of a rule that is either word-level or has no children. So D is a leaf in the rule
D′ → D NP , or the NP rule can be expressed as NP → Leaf N ′, equivalent to NP → N ′.

2. A rule is an exit rule if its rule has the form X → Leaf Leaf . Most word-level rules are exit
rules.

3. A rule is an left-recursive if it has the form X → X Y
4. The head of the rule X → Y Z is X

Note that when we encounter an exit rule we jump to some other area in our Recursive Tree traversal.
Perhaps the most dramatic jump in Figure 6 is that from the rule N ′ → N to the V P node (switching from
the subject in a sentence to the verb).

For simpler moves, note that if we go the exit rule A′ → A, we can jump back up the Tree to the rules
A′ → A′ Conj A′, AP → AP Conj AP , or N ′ → AP N ′. If we say ”quick”, we can choose to either
move on to say something like ”quick and brown”, or go to something like ”quick fox”. But we can’t skip
to say, starting a verb phrase from the subject adjective ”quick”. And if we say ”quick fox”, we can’t then
go back and say something like ”quick fox and brown”, where ”and” modifies the adjective. We’ve lost the
ability to make a choice we had access to earlier. Why is this?

Our commitments stack again keeps track of which scope we’re in. Whenever we come across a rule with
a left leaf, we push its head onto the current scope stack – the last stack in commitments . Every time we
recurse on/traverse a left subtree, we push a new scope to commitments . Whenever we arrive at an exit rule
of a left subtree, we can go to any left-recursive rule-node for the head of a rule in our current scope (i.e,
”The quick and brown”, popping within the last stack), staying in that scope. Or, we can ”exit” the scope
to the previous one (”The quick fox”, popping off a scope stack entirely from our commitments). In the
neighbor vertex we next move to, we mark the left subtree of its rule as explored and recurse right. For our
syntax tree to terminate we need to exit all scopes we enter – whenever we recurse left, we’re committed to
eventually return to the rule that we started from. The syntax of a sentence can thus be reduced to a series
of choices based on the scopes we’re committed to. We build our Graph around this property.

Note that this perhaps models what happens as we’re speaking. If we choose to say an adjective, then we
commit ourselves to following with either more adjectives, and eventually/or, a noun. While traversing the
Recursive Tree requires us to make our choices before we get to our word-level nodes, our Directed Graph
paths allow us to do this after we’ve a word, allowing us greater flexibility in syntax tree construction. This
greatly reduces backtracking as we search for trees with the properties that we want, namely, trees whose
equivalent programs are similar to the one we’re trying to build.

A* search Once a graph, we can run the A* search algorithm on our graph. A* is a search algorithm
typically used to find the shortest path in a graph. We start at some root point and then consider all of its
neighbors. We compute the actual cost to get to said neighbor (distance from the previous vertex), as well
as a heuristic that estimates how close the neighbor is the final goal. At each point in the algorithm, from all
possible ways we can expand the vertices we’ve already explored, we pick whatever neighbor has the lowest
expected cost (the actual cost + heuristic cost).

We implement find bf’(bf) as an A* search, where we search for a syntax tree that is functionally
equivalent to the input program bf (without loss of generality we can assume bf is a simplified bf program).

For A* to work we define the following functions (let v be a vertex and let bf be the bf program we’re
trying to encode)

1. get neighbors(v) : the neighbors of a vertex
2. is goal reached(v, bf) : whether or not we’ve reached our goal and can terminate search
3. distance(v1, v2) : distance between two vertices
4. heuristic(v, bf) : the heuristic cost estimate function from above, how far we think we are from the

goal
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get neighbors(v) is just the neighbors of a vertex in the Directed Graph that we built earlier.
For is goal reached(v, bf) , we return true if the following two conditions are met: (1) Our current

syntax tree is complete. We know this is true if we have nothing that we’re still committed to in our
commitments stack. And (2), the program our syntax tree encodes is functionally equivalent to bf .

Since we want to find syntax trees of minimum length, the distance between two vertices is 1 if the
vertex rule we’re going to has a word in it, and ϵ otherwise for some small number ϵ. We have to add that ϵ
so that our search program doesn’t just infinitely progress down some chain of nodes with rules that don’t
affect our encoded program.

And finally, the heuristic(v, bf) is how we encourage A* to look for syntax trees that are getting
closer to our encoded program. Let bfv be the partial program that the collection of syntax trees for v
encodes. We measure bfv compared to bf up to the point of their deviance. For any invertible operation
that’s still left in bfv after that point, we increase a cost variable – this represents a distance that we’ll
have to travel to ”undo” that operation. For any un-invertible operation, we increment cost by infinity.
This means we just made a wrong choice. Then, for any operation that’s still left in bf , we increase cost

as well.

Results When actually implemented, this approach has several problems that yield limited results. To
understand why we first observe some properties about our search mechanism. The A* algorithm is like
filling up a basin with water until the liquid’s surface reaches some point on the enclosing walls that we’re
looking for. The level of the water is the combined heuristic and distance scores. For the water to get to a
certain height, it has to get to every accessible level below that one. Or, if the water starts pouring out into
some lower basin it finds a way to connect to, it’ll fill up the second basin before uniformly rising higher
once again.

In our assignment of bf operations to X-Bar rules, we noted that direct paths between each bf operation
were often not possible, so we’ll regularly need to walk our syntax tree back in the ”wrong” direction, then
proceed with a path that inverts the intermediary operations thas wellat we’re required to pass through
before finding the operations we actually want in our final program. We have some low elevation chasm in
our basin that we’re looking for, but first we need to ”flood the search space”, or fill the water level high
enough so that we can start flowing into that new area. We may be on the path to a smallest syntax tree,
but as soon as we run into an operation we need to undo later, our heuristic penalizes us, so the algorithm
must try every other path before realizing the previously penalized path was the best option, then correctly
proceed with that.

For the bf operations that are more commonly assigned to rules in our syntax tree and more easily
undone, this approach works relatively well, just somewhat slow in terms of how fast computers can be. But
for the more rare operations (in my assignment, [ and ] especially), we have to search a much wider search
space first, to not only find those operations at all, but to also find a path to those operations that also
inverts all the intermediary operations required to use [ and ] in our rule assignment. The time it takes
to do this is exponential on number of intermediary operations. In these cases this approach was inefficient
enough as to become unusable.

Memoization? One thing I noted is that the A* algorithm will repeatedly find itself in similar positions to
ones it’s already ”solved” before. For example, consider the desired program +++>>+ ++> +++>>+ (spaces
just used as a visual separator). The substring +++>>+ is repeated twice. Our algorithm will find a path
through our Directed Graph that produces syntax trees that are functionally equivalent to that substring,
which may take some time, do some other operations, then do the exact same thing again. We would hope it
would be faster on the next pass-through but the algorithm has no concept of learning, and just reconstructs
a path from first principles again.

Memoization in computer science might help us here, the concept of saving work for subproblems that
an algorithm has already solved once, and then using those subproblems to solve the larger problem entirely.

What are our subproblems? Again, our algorithm translates inputted programs into syntax trees for
sentences that represent those programs. We can break down a collection of sentence syntax trees, into trees
for individual sentences as well as individual phrases or rules. For example, every time our search algorithm
builds a complete DP tree, we would save that phrase tree and the part of the program it encodes. The next
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time we start at a DP node, we can either search through the Recursive Tree again, or just substitute the
saved phrase tree we computed earlier.

Connection to Linguistics Memoization vs constituency and substitution
Subproblem memoization in this way is actually quite similar to another concept in linguistics: con-
stituency and substitution. Consider our test sentence again, ”The quick brown fox jumped over
the lazy dog”. We can substitute ”The quick brown fox” with just ”The fox” and still get a syntac-
tically correct sentence. Or, ”It jumped over the lazy dog”, or ”Martha jumped over the lazy dog”,
etc. However we couldn’t replace just ”fox” with ”it” and have a correct sentence (”the it∗ jumped
over the lazy dog”). This suggests that all of our substitutions belong to the same class of phrase (in
this case, determiner phrases), and we conclude that we can swap phrases out for other phrases of the
same class and still preserve syntactical correctness. This is what memoization is doing – saving the
complete phrases that we’ve already seen before and allowing them to be correctly inserted wherever
we can use a phrase of the same type.

Surely this strategy, seemingly justified by both conventional computer science wisdom and linguistics,
would save our algorithm, right? Unfortunately, after implementing memoization my program became slower
overall. Adding more choices to our graph – choosing to use the subtrees for phrases we’ve seen before –
increased the branching factor, which is generally a negative quality in graphs being searched by A*. Just
like humans, algorithms may as well freeze up when given more options to choose from.

3.2 Second approach: Tree Search

The Graph Search approach was founded on several powerful ideas, like leveraging an existing search al-
gorithm, creating more flexibility in our program search by delaying choices, and utilizing memoization to
reduce repeated computation. However it struggled in a key way: whenever we needed to traverse and undo
intermediary operations required to access an operation we desired for our program, we would have to find
this path by trying all other paths in the region before we could conclude that temporarily going off track
from our goal program was the right move. Furthermore, this process would be extended exponentially based
on the number of operations that needed to be inverted. My Tree Search approach resolves most of these
issues and more.

The basic idea is rather than search for the entire goal program (bfgoal) all at once, we search for individual
sentence trees whose programs (bfT ) contain a high overlap with our goal program. Ideally bfT is a perfect
substring of bfgoal. We would then split bfT around its overlap with bfgoal into a left and right program, then
we recursively find syntax trees that solve those smaller programs. Repeating this process builds a Binary
Tree where each node is itself a syntax tree. Because each program is constructed via the in-order traversal
of its own syntax tree, we construct the final program for bfgoal by arranging each sentence-level syntax tree
according to an in-order traversal of the ”meta” Binary Tree.

It’s possible bfT is not a perfect substring however. For example, if bfT has extra operations on the
right that aren’t in bfgoal, we call this the right-remainder of the program (with a respective left-remainder
possibility as well). In this case, when we recurse, in our right subprogram case we prepend the inversion
of the right-remainder. When we append the recursive subprogram to the right of bfT this will undo the
incorrect remainder portion.

On a macro, sentence-by-sentence level this rewards making necessary ”mistakes” (deviations from the
goal program) and then fixing them, an improvement from Graph Search. We can also build our program
starting at any point, rather than just progressing linearly left to right as Graph Search did, giving us more
flexibility. Similar to Graph Search though, the algorithm for finding an optimal tree for bfT is still based
on A*, but also improved. We construct a graph to run A* on.

Building the graph As before the vertices in our graph represent syntax trees, and the neighbors represent
ways we can expand that current tree. First, we begin by presenting all possible X-Bar rules as possible
starting points to the A* search algorithm. These represent nodes in the syntax tree we’ll be constructing,
these are the starting ”root nodes”. The root in a tree is the highest point. For any tree, if either its root or
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bfT : >[-

>> ]>

<

(a) Binary Tree for finding >>>[-]

1. Looking for >>>[-] . Found >[-

(a) Left. Looking for >> . Found >>

(b) Right. Looking for ] . Found ]>

i. Left. Doing nothing.
ii. Right. Looking for < to undo extra > .

Found < .

(b) Program recurrence

Fig. 7: Each node in the Binary Tree represents a syntax tree encoding that program. On line 1.b we have a
right-remainder of > .

a node below its root is incomplete, we connect the tree’s vertex in our graph to all nodes that immediately
fill the incomplete space. To prevent too many choices in our graph though we only ever focus on at most
one incomplete node at a time.

If the syntax tree is complete, i.e the lowest levels of the tree are all leafs/word-level nodes, then we
expand the tree upwards; we look at what rules the current root node can be a child of and add those as
possible ways to grow the tree. If the tree is complete and the root node is not a possible child of any other
rules, we mark the tree as a possible ending point for the program. The only rule that has this property in
my X-Bar rules is S → DP V P , i.e, we can only end if our syntax tree represents a complete sentence.

N’ → AP N’

AP → A’

Leaf A’ → A

A Leaf

None

(a) Starting tree with incomplete
node below root

N’ → AP N’

AP → A’

Leaf A’ → A

A Leaf

N’ → N

N Leaf

(b) Fill incomplete node with
N ′ → N , yielding complete tree

N’ → AP N’

None N’ → AP N’

AP → A’

Leaf A’ → A

A Leaf

N’ → N

N Leaf

(c) Grow tree upwards with
N ′ → AP N ′

Fig. 8: Example of a possible path in our Tree Search graph

A* Search Heuristic Again, the goal of A* in Tree Search is to find the syntax tree for an individual
sentence whose program operations have the greatest overlap with our goal program. Rather than count
overlap based on the number of common operations, however, we assign each operation a weight roughly
based on how many intermediary operations we need to pass through (and later undo) to access it. We find
the common overlap between bfT and bfgoal where the sum of weights of each character in the overlap is
maximized (greatest cost substring).5

Usually in A* the heuristic function – which estimates a distance to the goal – is strictly positive.
Recall the analogy about filling a basin with water, where the water fills up all accessible regions of lower
elevation before rising upwards. If we assign negative weight to the things that we want in our bfT program,
we can essentially get the water to flow downhill, which is faster. And if we assign a negative weight of greater
magnitude for an operation that involves more intermediaries we have to invert, then we can coax our water
into a local minimum pool, which fills up with water as we find a way to undo the unwanted operations.

5 Because A* looks for shortest or cheapest paths, we multiply this total value by -1. Smaller is better.
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Furthermore, we don’t just care about overlap between bfT and bfgoal; we also want to minimize the
operations in bfT that aren’t in bfgoal (the left and right remainder, from earlier). We use a separate, less-
harsh weighting scheme for these ”mistakes”. Namely, in most instances we don’t penalize > and < since
by design, we assigned these to the structural components of the sentence that we can’t help but run into.
We expect that we’ll undo those operations later. Similar to Graph Search we also assign a weight of ∞ to
uninvertible operations we don’t want in our program string.

Finally, to help prevent finding local minima when better solutions exist, we add a small, unfavorable
weight to every finished sentence syntax tree. Using our metaphor, this causes the waters of our A* search
to rise again up to a fixed height, just to see if there are any lower elevation regions it can drain into.

The complete code for this and the rest of the project can be found in the file tree search.py .

Results The code works spectacularly, entirely as desired and orders of magnitudes faster than Graph
Search. We trade off some levels of perfection for speed, however; our A* search isn’t guaranteed to give us
syntax trees of minimum size, but trees are small enough for our needs. For small programs commonly used
to undo mistakes (i.e > , <<< , etc), I memoize the sentences that correspond to these programs for increased
efficiency.

Because of side-effects due to hashing, the algorithm isn’t deterministic, so even in between repeated
calls to the same goal program, sentences are varied, and for each memoized program I save several possible
sentences that are functionally equivalent for more variety.

Example programs and their encoded equivalences can be found in Appendix C

4 Assigning Words to Syntax Trees

Now begins the Mad Libs game of filling in each word in the syntax tree.
I started by just picking word banks for each each part of speech: determiners, pronouns, nouns, verbs,

adjectives, and adverbs. Naively, for each word in the sentence we can just randomly slot in a word from the
word bank corresponding to its part of speech. However this yields a few problems with English grammar. I
identified the following rules I wanted to respect:

1. Pronoun agreement. Pronouns have three forms: nominative, accusative, and anaphoric. For example,
for ”I”, the respective forms are ”I”, ”me”, ”myself. For ”you”, it’s just ”you”, ”you”, ”yourself”. I need
to find out what the subject of the sentence is, and it’s the same as the pronoun in an object, I use
the anaphoric form (”I see myself ”). If it’s different, I use the accusative form (”You see me”). For the
subject, I use the nominative form.

2. Verb conjugation. Once I know the subject, my verb needs to agree with it. So ”You are my friend”
is ok, but ”You is* my friend” is not.

3. Noun pluralization. Some nouns need to be pluralized based on my X-Bar rules. Some nouns in my
wordbank are already plural (like ”eyes”), and some nouns are known as mass nouns, which do not get
pluralized. For example, consider the words ”<noun (plural)> <verb> <determiner> <noun>”. We can
write ”Eyes cover the face”, or ”Enthusiasm earns my respect”. There’s no such thing as ”Enthusiasms*”,
and in the two sentences the verbs ”cover” and ”earns” are conjugated differently (”Eyes covers* the
face” does not work).

To implement these rules I use a system of tags and constraints. Certain X-Bar rules have their own ”tags”,
and all other rules under them in a syntax tree, including words, may inherit them. Individual words can also
have their own tags, and may propagate their tags upwards through the tree. Word choice may be modified
based on the tags in the current scope.

For example – when we choose the subject, we create a tag for which person we’re in (first, second, or
third), then send that tag to all ancestors in our syntax tree. We fill in words left to right, in-order again.
When we go to select a verb, the subject tag is already in scope, as well as a possible pluralization tag, which
modify the verb we choose accordingly.

There are a few more aesthetic rules I implemented – alternating the possession in a sentence between
”your”/”my” and the person ”you”/”I”; making sure certain words aren’t repeated where they shouldn’t
be (ex, we can’t use the same adjective twice to describe the same noun); using more refined word-banks in
certain situations – but these are also done through the system of tags, constraints, and modifications.
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5 Love Languages

In my schema the program that a sentence encodes comes entirely from its syntax tree, with no regard to
the individual words. So what kind of words do we want to choose in our sentences? What do we want to
say, to not say? We return to another program with similar goals, the 1952 Strachey love letter algorithm,
regarded by many as the first work in computer-generated literature. [5]

5.1 Lesser known homosexual: Christopher Strachey

Christopher Strachey was an early programmer and personal colleague of Alan Turing. They both attended
King’s College in Cambridge, with Turing beginning his master’s the year Strachey started his bachelor’s.
Despite shared interests in computing the two first met socially.

While Turing conceptualized the field of computer science we know today, Strachey himself was a source
of many firsts: first video game (draughts6), England’s first computer music (the British National Anthem),
and the first computer-generated literature.

Strachey’s love letter algorithm was programmed on Manchester’s Ferranti Mark I computer – the manual
of which was written by Turing. Soon, the university’s notice board slowly began populating with printouts,
signed ”M.U.C” for Manchester University Computer.

DEAR LOVE

MY CHARM CURIOUSLY HOPES FOR YOUR LIKING. MY COVETOUS AFFECTION IMPATIENTLY

LUSTS AFTER YOUR EAGER ARDOUR. YOU ARE MY LITTLE ARDOUR. MY WISTFUL LIKING LOVES

YOUR DESIRE. MY WISTFUL INFATUATION LONGS FOR YOUR FOND INFATUATION.

YOURS SEDUCTIVELY

M.U.C

Fig. 9: Output from the love letter algorithm using Nick Montfort’s reimplementation

The letters are overwrought, still dripping from being dunked in and pulled out of a thesaurus. With a
reimplementation [10] of Strachey’s algorithm on my computer I can endlessly refresh its results, never once
having to worry about exhausting the combinatorial explosion of possibilities but never once really seeing
anything new. Undercurrents of longing and desperation guide an experience of reading separate pages ripped
from the same book. From Strachey, a queer man with a similar ”love life” to Turing, according to the latter’s
biographer, [6] the work has been viewed as a queer critique of heteronormative expressions of affection.

Phrase structure rules weren’t conceptualized until 1957, five years after Strachey’s algorithm, but even
before it didn’t take Chomsky’s linguistic theory to represent and understand syntax trees. The program
plays the same Mad Libs game, with the fixed syntactic structures ”YOU ARE MY [Adjective] [Noun]”, and
”MY [Adjective] [Noun] [Adverbs] [Verbs] YOUR [Adjective] [Noun]”. The words are all the same, mostly
pulled straight from Roget’s thesaurus. It’s the syntax that defines the letter.

Given this it’s easy to follow along myself. With only a few additions I largely deferred to Strachey’s
word banks. On on random output, here’s how my algorithm represents the bf program for printing ”Hello
World”, just the sentences without their syntax trees: 7

I PANT FOR DEVOTION. YOU ARE MY DEAR ARDENT LOVEABLE JEWEL. MY

EAGERNESS AVIDLY AND LOVINGLY AND IMPATIENTLY WINNINGLY SWOONS. I YEARN FOR YOUR

BODY. MY DEVOTION MELTS. MY LOVINGLY FERVENT FONDNESS DREAMS. MY TOTALLY AMOROUS

RAPTURE FLIRTS. YOUR FANCY OFFERS MY AFFECTION YOUR FERVOUR. YOU ARE MY ADORABLE

6 ”draughts [sic]”. Checkers is the American-English name of the game
7 bf itself is an inefficient language, and it’s easier to pack single characters onto a screen rather than words. The
complete program (166 more words) is in Appendix C
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JEWEL. MY BODY HUNGERS IN LUST AND PINES. YOU ARE MY PRECIOUS COVETOUS HONEY.

YOUR TOTALLY IMPATIENT LIKING DANCES. MY ENCHANTMENT OFFERS YOUR LIKING MY

LONGING. I AM YOUR COVETOUS AFFECTIONATE JEWEL.

5.2 Why love letters?

I conceived of this project in Fall of 2022, its first externalized proof of concept occurring, somewhat embar-
rassingly, during pillow talk with my then boyfriend. Perhaps appropriate origins. Later that year I discovered
Christopher Strachey and thought immediately of the tucked-away idea of my programming language. If the
words aren’t important to the program, what do I fill them with? An upcoming student-led presentation
showcase, scheduled to be held on Valentine’s Day, spurred my first hurried attempt at implementing this.
In motivated bursts during the week before, I drew syntax trees in the margins of the math notes, but
ultimately couldn’t come up with anything.

I committed myself to trying again only years later, beginning the Spring and final semester of my senior
year, the 2025 semester of writing this, once again with syntax trees scratched into the margins of my
notebooks. I couldn’t leave it unresolved. As I navigated the bugs and conceptual challenges, I reasoned
more about the project.

If Strachey’s algorithm criticizes heteronormative displays of affection as algorithmic, then this process
literally turns them into algorithms. If the sentences Love Language generates are reduced functionally to
only their syntax, the loving words, despite or maybe even because of their ornateness, contribute nothing
to the final result. In computer science the semantics of a program is again what it does. In language the
semantics of a sentence is its meaning. The latter lens yields only the singular interpretation of a yearning,
pining, clinging, longing – while via the programming semantics, we can communicate anything. The love
letter is less a genre of content than of means.

From a different angle, we might personify the process of generation itself, which at this point in the
paper we’re now familiar with. The A* algorithm, which hurriedly scans through all the things it might say,
all the possible variations of expression it can formulate, is a process of rumination. It is the anxious mind
of the obsessed lover. And if the failed Graph Search approach is a closer model for human language, we see
that often in a desire for perfection, the speaker may say nothing at all. Tree Search, more tolerant of its
own mistakes and free from our natural constraint of conveying language linearly, delivers results through
methods of its inhumanity.

6 Conclusion

Fig. 10: Printed letter in CMU’s school of com-
puter science

Strachey’s algorithm is perhaps a computational proof to
the strength of our empathy. One which would invariably
fail the Turing test, but maybe still momentarily shock
us with its misplaced passion. When I read the outputted
letters, unceremoniously printed and easily disposed of on
my computer screen, I can’t help but feel a bit bad for the
program. The relatively simple code is enough to briefly
hold a mirror to our own mental processes. As soon as it
starts to communicate on a level of linguistic semantics,
Strachey’s algorithm and Love Language become these
crude drawings of faces on paper – but even then I want
to speak to them.

I see printing a love letter — and displaying it in a
public forum as Strachey did — less as putting some ob-
sessive algorithm in the stocks and more as an honorific.
It is the ephemera of a relationship. The repeated obser-
vation of the promises and commitments of the sentence. We acknowledge the shortcomings of the machine
but still recognize what it reflects in us, the ways it even briefly pulled at our hearts.

Modern computer-generated text is today primarily produced by generative AI. Actual “love programs”,
which more naturally conceal the depths of their yearning and the mechanics of their thought, can be readily
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designed by simple prompting on top of an existing large language model. But in their imprecise proximity
to something entirely convincing, I find them less relatable. It’s the same uncanny valley of a wax figure, the
black box thought of an alien mind. Strachey’s is honest to a fault, but maybe there’s something to respect
in that. Love Language follows suit.
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A X-Bar Rules Used

The rules SP → EXC and SP → QUERY are my own and represent ”exclamation” and ”query” respec-
tively, designed to simplify the rule assignment.

Sentence rules SP → DP VP (1)
SP → EXC . (2)
SP → QUERY , (3)

Determiner rules DP → DP Conj DP >> (4)
DP → Pronoun <<<< (5)
DP → D’ (6)
D’ → D NP (7)
D’ → NP >>> (8)
DTVDP → DP DP (9)

Noun rules NP → N’ > (10)
NP → NP Conj NP ] (11)
N’ → AP N’ + (12)
N’ → N’ PP (13)
N’ → N < (14)

Verb rules VP → V’ > (15)
VP → VP Conj VP <<<< (16)
V’ → V’ PP (17)
V’ → V’ AdvP (18)
V’ → AdvP V’ (19)
V’ → TV DP > (20)
V’ → DTV DTVDP > (21)
V’ → V (22)

Adverb rules AdvP → Adv’ (23)
AdvP → AdvP Conj AdvP (24)
Adv’ → Adv’ Conj Adv’ ++ (25)
Adv’ → AdvP Adv’ [ (26)
Adv’ → Adv - (27)

Adjective rules AP → A’ + (28)
AP → AP Conj AP ------ (29)
A’ → A’ Conj A’ -- (30)
A’ → AdvP A’ - (31)
A’ → A + (32)

Preposition rules PP → P’ >> (33)
PP → PP Conj PP >>>> (34)
P’ → P DP (35)

Table 2: X-Bar Rules used, and their assigned operations
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B Frequency of Brainfuck Operation

I compiled my corpus somewhat arbitrarily with common bf programs (word count, fibonacci sequence, hello
world, an approximation for pi) .

In the following table, ”frequency” is how common the operation is in the corpus. Average run length is
how many times it’s likely to be repeated, when it does show up.

Operation Frequency (%) Avg Run Length

> 20.2 6.8
< 17.9 7.1
+ 30.8 3.4
- 11.4 1.4
[ 7.6 1.1
] 7.6 1.0
. 4.3 1.0
, 0.2 1.0

Table 3: frequency of each bf operation and average run length
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C Example Love Letters and Completeness of Love Languages

For brevity, complete syntax trees are instead written linearly as just their words. Parentheses wrap all words
that are in a common phrase.

bf program: .+[.+]
writes all printable characters to the console.

PLEASE!. I YEARN WITH YOUR FANCY. MY TOTALLY DARLING BEAUTIFULLY INCREDIBLY

LITTLE FELLOW FEELING GAZES. LORD ABOVE!. I TEMPT YOUR THIRST. MY EYES SWOON.

YOUR BEAUTIFULLY FOND ENTHUSIASM SIGHS. YOUR FERVOUR AND FONDNESS DREAMS. I

HUNGER ON YOUR HEART.

syntax: EXC ((Pronoun (TV (D N))) ((D N) V)) ((D ((Adv A) (((Adv Adv) A) N))) V)

EXC ((Pronoun (TV (D N))) ((D N) V)) ((D ((Adv A) N)) V) ((D (N Conj N)) V)

(Pronoun (V (P (D N))))

bf program: ++++++++++[>+>+++>+++++++>++++++++++<<<<-]>>>++.>+.+++++++..+++.<<++.>+++++++++
++++++.>.+++.------.--------.<<+.<.

prints ”Hello World” to the console.

I PANT FOR DEVOTION. YOU ARE MY DEAR ARDENT LOVEABLE JEWEL. MY

EAGERNESS AVIDLY AND LOVINGLY AND IMPATIENTLY WINNINGLY SWOONS. I YEARN FOR YOUR

BODY. MY DEVOTION MELTS. MY LOVINGLY FERVENT FONDNESS DREAMS. MY TOTALLY AMOROUS

RAPTURE FLIRTS. YOUR FANCY OFFERS MY AFFECTION YOUR FERVOUR. YOU ARE MY ADORABLE

JEWEL. MY BODY HUNGERS IN LUST AND PINES. YOU ARE MY PRECIOUS COVETOUS HONEY.

YOUR TOTALLY IMPATIENT LIKING DANCES. MY ENCHANTMENT OFFERS YOUR LIKING MY

LONGING. I AM YOUR COVETOUS AFFECTIONATE JEWEL. YOUR TOTALLY AMOROUS TENDERNESS

PINES. MY LONGING LEAPS. YOU ARE MY CRAVING DUCK. I SIGH WISTFULLY. MY

TENDERNESS AND DEVOTION GAZES. MY ADORATION CLINGS TO YOU. LITTLE EYES TENDERLY

FLIRT. PLEASE!. YOUR LOVINGLY EAGER APPETITE FLIRTS. PLEASE!. I THIRST FOR

LONGING. YOU ARE MY CRAVING CURIOUS MOPPET. MY INTENSELY TENDER HUNGER GAZES.

OH!. OH!. MY FONDNESS GAZES. YOU ARE MY AFFECTIONATE JEWEL. TENDERNESS PROMISES

YOU MY ENCHANTMENT. LORD ABOVE!. I CARESS. MY ADORABLE LUST BEAUTIFULLY PINES.

LORD ABOVE!. YOUR LUST PRIZES MY INFATUATION. YOU ARE MY FOND LOVING DEAR

AMOROUS PASSIONATE DUCK. AMBITION OFFERS YOU MY BODY. LORD ABOVE!. MY ARDOUR

CARESSES. PLEASE!. YOUR SYMPATHY FLUTTERS. YOU ARE MY BURNING HONEY. MY LONGING

GAZES. OH!. I CARE FOR HUNGER. I AM YOUR TOTALLY PRECIOUS LITTLE DEAR. YOUR

ANXIOUS BEAUTIFULLY PASSIONATE THIRST CARESSES. OH!. I SIGH FOR YOUR ENTHUSIASM.

MY ADORATION DANCES. MY PRECIOUS WISTFUL FERVENTLY DEVOTED DARLING ENCHANTMENT

SWOONS. OH!. I PINE. YOUR VERY DEAR ENTHUSIASM MELTS. OH!. I WANT YOUR THIRST.

MY AMBITION YEARNS. OH!

We note that Love Language is complete – i.e can represent any bf program – if it can construct each op-
eration individually. Then we could simply just represent any program by converting operations individually
to these encodings, even if less efficient.

>

(Pronoun (TV N))

I WISH FOR DEVOTION

<

((Pronoun (TV (D N))) ((D N) V))

I THIRST FOR YOUR DEVOTION. YOUR LOVE CARESSES
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+

(Pronoun (V (P (D N)))) ((D ((Adv A) N)) V)

I CARESS BEYOND YOUR FANCY. MY BEAUTIFULLY LOVESICK FERVOUR SWOONS

-

(Pronoun (V (P (D N)))) ((D N) (V Adv))

I GAZE WITH YOUR HUNGER. YOUR HUNGER GAZES TENDERLY

[

((Pronoun (TV (D N))) ((D N) V)) ((D (((Adv Adv) A) N)) V)

I CARE FOR YOUR FANCY. MY LONGING HUNGERS. YOUR TOTALLY INTENSELY CRAVING EYES CARESS

]

((D (N Conj N)) V) ((Pronoun (TV (D N))) ((D N) V))

YOUR FERVOUR AND EAGERNESS SIGHS. I ADORE YOUR LONGING. YOUR LOVE GAZES

.

EXC

PLEASE!

,

QUERY

DO I DREAM?

Download the code for this project and run the executable python main.py to generate your own
sentences: https://cassidydiamond.me/love-languages

https://cassidydiamond.me/love-languages
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