
Love Languages
Re-imagining English Syntax as a Turing Complete
Programming Language

Cassidy Diamond

Love Languages
An esoteric programming language inspired by early concepts
in linguistics, computer science, and computer art

Cassidy Diamond

Linguistics

Introduction: X-Bar Theory

● Constructed by Noam Chomsky in
1957

● Represents the syntax of a language
in binary trees and rules

○ “Syntactically correct”
○ Colorless green ideas sleep furiously

● X-Bar rules determine how pieces of
language can “correctly” fit together

Image Source:
Wikimedia (Creative Commons License)

Fig. 3: Example X-Bar rules

X-Bar Theory Rules (Example)

Observations:

● Every sentence is composed of a
determiner phrase and a verb phrase

● All adjectives are followed by nouns
● Adverbs can modify adjs or verbs
● Prepositional phrases can modify

nouns or verbs

● Highly structured output based
on starting rules

● Rules can exhibit recursive
structures

Example Source:
Syntax: A Generative Introduction by Andrew Carnie

Computer Science

Well known computer-scientist: Alan Turing

● Concept of Turing Completeness originating in 1950

○ ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

● Turing Machine - conceptual model of a computer

● Any programming language / schema that can represent a
Turing Machine is Turing Complete

● Church-Turing Thesis - Any problem that a computer
can possibly solve, can be solved by a Turing Complete
programming language

Brainf*ck (bf)
This is a programming language!

++++++++++[>+>+++>+++++++>
++++++++++<<<<-]>>>++.>+.+
++++++..+++.<<++.>++++++++
+++++++.>.+++.------.-----
---.<<+.<.

Output: “Hello World!”

● Incredibly simple Turing Complete programming language
● 8 basic operations with frequent repetition: +-[]<>.,
● Highly structured output based on its operations
● Operations can exhibit recursion, or loops – like X-Bar rules!

Idea:

A mapping from syntactically correct programs
(in the computer science sense) to syntactically correct
sentences (in the linguistics sense).

A programming language where each program is a collection
of X-Bar syntax trees, which can be represented by sentences.

Computer Science
Implementation
1. Design a mapping between syntax trees and

computer programs
2. Create a way to easily encode arbitrary programs

into syntax trees
3. Assign words to syntax trees programs to represent

them as sentences

1. Map syntax trees to computer programs

● Goals
○ use structure of syntax tree
○ programs → varied sentences
○ short programs → short sentences

● Convert X-Bar syntax trees into
bf programs

○ computer science concept:
In-Order traversal

● Each node in a syntax tree gets
mapped to a set of bf operations

>+--++<>

“incredibly green ideas”
or “very confusing concept”

Fig. 5: Converting a syntax tree into a bf program

1. Assign bf ops to X-Bar Rules

● Each node in a syntax tree gets
mapped to a set of bf operations

● These rules are pretty much the entire
programming language specification

2. Encode arbitrary programs into syntax trees

● Design and implement find_bf function
○ Input: Any bf program
○ Output: a collection of syntax trees that

encode a functionally equivalent program

● Two approaches: Graph Search and Tree Search

2. Combine Rules into Programs: Graph Search

Roughly:

● Created an algorithm capable of
generating all possible syntax trees
(given my input X-Bar rules)

● Use computer science concept
A* search algorithm to look for
sentences that encode desired program

First problem: my Graph Search
algorithm is too slow

2. Graph Search: Memoization

Linguistics concept: constituency and substitution

● We can tell which words are part of the same phrase by constituency tests
● “The undergraduate student gave her presentation”
● “ She gave her presentation”

● ⇒ “She” and “the undergraduate student” are both determiner phrases

Computer science concept: memoization

● Speed up my search function by remembering syntax phrases we’ve explored before
● Use constituency to substitute like phrases

2. Graph Search: Results

didn’t work! 😔
or, it’s still too slow

:(

2. New Approach: Tree Search

Graph Search

● both use A* search algorithm in
some capacity

● Constructs sentences left to right,
in speaking order

● Memoization
● too slow to work effectively

Tree Search

● both use A* search algorithm in
some capacity

● Constructs sentences starting in
middle, extending outwards

● Memoization/Dynamic programming
● fast! it works!

● less “human” model of language

find_bf: takes in a bf program as input, outputs syntax trees

3. Assign Words to Syntax Trees

● Convert syntax trees into sentences, like Mad Libs
● Replace “syntactic categories” (e.g noun, adjective, verb, etc)

with words from a word bank, respecting grammar
○ Pronoun agreement
○ Verb conjugation
○ Noun pluralization

● Important concept: The words in a sentence do not affect the
meaning of the encoded program. Only the syntax of the sentence

○ “Colorless green ideas” == “Very important concept”
○ Semantics of a sentence vs semantics of a program

3. Assign Words to Syntax Trees

If the words in a sentence don’t affect the
meaning of the program, what do I choose
to say?

Computer Art

Lesser known computer-scientist: Christopher Strachey

● Christopher Strachey: fellow student and friend,
of Alan Turing. Foundational to computer
science in his own right. Both queer men.

● Strachey Love Letter Algorithm
○ In 1952, letters started appearing on the bulletin

boards of the Manchester Computer Lab
○ First piece of computer-generated literature

YOU ARE MY [Adjective] [Noun]

MY [Adjective] [Noun] [Adverbs] [Verbs]
YOUR [Adjective] [Noun]

Strachey Love Letter Algorithm

HONEY SWEETHEART

MY THIRST PINES FOR YOUR FOND LONGING. YOU ARE MY
WISTFUL AFFECTION: MY PRECIOUS INFATUATION. MY
AFFECTION COVETOUSLY LOVES YOUR TENDERNESS. MY
PASSIONATE AFFECTION CURIOUSLY HOPES FOR YOUR
LOVEABLE HEART.

YOURS DEVOTEDLY,
M.U.C.

In 1952, letters started appearing on the bulletin boards of the Manchester Computer Lab

Fig 10. Printed love letter on SCS bulletin board

Love Language: My Dearest M.U.C,

I HUNGER FOR EAGERNESS. YOU ARE MY COVETOUS FOND LOVEABLE
JEWEL. YOUR LOVE GAZES AFFECTIONATELY AND TENDERLY AND
BEAUTIFULLY EAGERLY. I OBSESS ON YOUR FANCY. MY INTENSELY
AVID ENTHUSIASM YEARNS. MY INCREDIBLY IMPATIENT AMBITION
SWOONS. YOUR KEEN LUST CARESSES. MY BEAUTIFULLY AVID
LOVEABLE BURNING INFATUATION MELTS…

++++++++++[>+>+++>++++++
+>++++++++++<<<<-]>>>++.
>+.+++++++..+++.<<++.>++
+++++++++++++.>.+++.----
--.--------.<<+.<.

Output: “Hello World!”

Love Languages vs Strachey Love Letter Algorithm

● Strachey’s Love Letter algorithm as a queer
critique of heteronormative displays of affection

● Turning algorithmic love letters into literal
algorithms

● Turing Completeness: Limited semantics1 of
each sentence vs unlimited semantics2 of
program

○ 1: In the linguistics sense
○ 2: In the computer science sense

Love Languages vs Strachey Love Letter Algorithm

“In addition to readings based on queer critique of
heterosexual phatic writing, I also often suggest that
these love letters might threaten human jobs. The most
literate soldier in the platoon during World War II, for
instance, would often write love letters for others in
exchange for extra rations. Perhaps I’m joking, but I find
these sorts of overreadings productive.”

Nick Montfort, professor of digital
media at MIT

● ChatGPT, programmers today,
computer-generated-literature…

● A more optimistic reading: expressing love

Fig 11. Printed email on cork board in my room

Thank you!

https://
cassidydiamond.me/
love-languages/

Read the paper/code

https://cassidydiamond.me/love-languages/
https://cassidydiamond.me/love-languages/
https://cassidydiamond.me/love-languages/

